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We present noncanonical Poisson brackets for four theories of superfluids: irrotational 4He, rotating 4He, anisotropic 
liquid 3He-A without spin, and anisotropic liquid 3He-A with spin included. 

Introduction. Hamiltonian formulations for superfluids in terms of canonical Poisson brackets were first recog- 
nized by Khalatnikov et al. [l-4], who found them to be a reliable means of discovering the correct two-fluid 
equations of the phenomenological, macroscopic theory. In particular, canonical hamiltonian formulations were 
given for two-fluid models of superfluids, including 4He [ 11, rotating 4He [2], and 3He-A [3,4]. 

However, the canonical approach for superfluids is flawed by the introduction of auxiliary, unphysical 
“potentials”, which are required in order to complete the hamiltonian structure. Moreover, in the canonical formu- 
lation, the velocities of the superfluid and normal fluid do not appear as dynamical variables, i.e., there are no vari- 
ables conjugate to the velocities and the time derivatives of the velocities do not appear explicitly. Instead, the 
velocities are determined by relations for the total momentum density, M, of the form, 

M = WP, 4, VP, Vq) , (1) 

where p, q are sets of canonically conjugate variables, some of which involve the unphysical potentials. The canon- 
ical equations are 

G=s9l/sp, j=-6%/6q, (2) 

for hamiltonian 91 [p, q 1. The desired equations of motion for the physical variables must be determined from the 
canonical equations via the relation (1) by algebraic manipulation. For more details, see, e.g., ref. [4]. 

Based upon a more physically-intuitive approach, Dzyaloshinskii and Volovik [5] have recently derived non- 
canonical hamiltonian structures for superfluids, as well as for other hydrodynamic systems. Khalatnikov et al. [6] 
have also introduced noncanonical hamiltonian structures for superfluids and so-called “quantum fluids”. These 
noncanonical Poisson brackets are associated phenomenologically with geometrical transformation properties of 

the physical variables and lead directly to equations of motion in hamiltonian form 

fi= {H,F} ) (3) 

where the noncanonical Poisson bracket, {H, F}, is taken between any functional of the physical variables, F, and 
the hamiltonian, H, which is the total energy of the system, as expected. Thus, the use of noncanonical Poisson 
brackets presents a direct hamiltonian formulation of superfluid hydrodynamics in terms of physical variables. 

Noncanonical Poisson brackets have also been introduced recently for various other nonlinear field theories of 
physics, including the Maxwell-Vlasov equations [7], magnetohydrodynamics [8,9], multifluid plasma dynamics 
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[9,10], nonlinearelasticity [5,9], andevenchromohydrodynamics,which is the extensionof multifluid plasma
physicsto Yang—Mills fields [11]. Fora surveyof otherapplicationsof noncanonicalbrackets,see,e.g.,ref. [121.
In eachcase,noncanonicalPoissonbracketsaresummonedby thehamiltonianformulationof the theory in terms
of thephysicalvariables.

Now, if thehamiltonianstructurein termsof physicalvariablesis noncanonical,thereis no causefor regret.
Rather,thereis anopportunityto investigatethe theory furtherby associatingits hamiltonianstructurewith an
appropriateLie algebra,see,e.g.,refs. [9] and [11].

Here we showfor thesuperfluids4He, rotating4He,andanisotropic3He-A (with, andwithout spin included),
that the canonicalhamiltonianformulationsof refs. [1—4]restrictproperlyto producenoncanonicalPoisson
brackets,which confirmandextendthe resultsin ref. [5]. Wealso associatethesenoncanonicalPoissonbrackets
for superfluidsexplicitly with differential Lie algebras.Moreover,we extendtheresultsfor 3He.A to thecaseof
anarbitrary internalsymmetryalgebra.

Noncanonicalbracketsby restrictionofcanonicalones.As remarkedin the introduction,the resultsderived
heredependuponcanonicalbracketsfor superfluidsderivedearlierby Khalatnikovet al. [1—4].We follow a stan-
dardprocedurefor thederivationof noncanonicalbracketsby restrictionof canonicalones,see,e.g.,ref. [13]. In
eachcase,the restrictionfrom canonicalvariablesp, q, to noncanonical,physicalvariablesis givenby algebraic
anddifferentialrelationsof the form (1).

Consequently,to reportthe resultsfor eachtheorywe simply tabulate(a) canonicalvariables,(b) physicalvari-
ablesto whichwe restrict,(c) the resultingPoissonbracket,{F, G}, betweenanytwo functionals,F, G, of the
physicalvariables,and(d) theassociationof the newbracketto aLie algebra,includingits mathematicalnotation
andcommutator.With eachof thesePoissonbrackets,thedynamicalequationsfor the physicalvariablesare then
expressiblein thehamiltonianform,(3). The properchoice of thehamiltonian,H, for eachtheorycanbefound
in the referenceslistedin eachsection.

A difficulty, in principle,with suchPoissonbrackets,eventhosefoundby restrictionof a canonicalbracket,is
to verify that they do, indeed,satisfytheJacobiidentity. However,sincethebracketswe deriveareconstructed
to be linear in their variables,theyeachmay beassociatedreadilywitha Lie algebra.This guaranteesthat the
Jacobiidentity is satisfied.

We usethefollowing notation.D D(R’~),vectorfields on R’~A = A1(R’~),i-forms on R’~~, a finite dimen-
sionalLie algebra;X~,X

1,elementsof D; f,g, f, j E A
0 w E A’s; 0 E A’~1.D actsupon itself by commutationof

vectorfields andactsuponAt by Lie derivation,denoted,e.g.,X(~)for ~E A’. For LE ‘~‘ ; .12 L~éM,[ê,~,é~J
~ t~,structureconstantsof ~ - Latin indicesj= 1, ..., n; Greekindicesj.t, r’, a = I, .., m with m dim ~

sumwhenindicesrepeat.Finally, the symbolo denotesthesemidirectproduct.

Superfluid4He. Forsuperfluid4He, thecanonicalvariables[1] are threecanonicallyconjugatepairs(p,a),
(s,i3), and(f, y). In termsof thesecanonicalvariables,thephysicalvariablesaregivenby: p, massdensity;a, the
phaseof theorderparameter,whichis relatedto superfluidvelocity,u5,by v~= Va; s,entropydensity;andM,
totalmomentumdensity,whichis relatedto theothervariablesby

MpVa+sV~3+fVy. (4)

Via relation(4), one restrictsfrom thecanonicalbracketto thePoissonbracketin physicalvariables.
The resultingbracket,for functionals,F,G, of variables [p, a,s,M], isfound to be

{F, G} ~[(6G/~p)a
1p+ (~Gf6a)a,1+ (6Gf6s)a1s+ (~G/6Mk)(Mlak+

0lMk)1 6Ff6M
1

-~-(
6G/6Mk)(pak6F/bp — ak 6F/6a + sak5F/6s)} + [(6F/6p)6G/.5a— (5G/bp)6F/ba], (5)

where meansequality,modulodivergences.The addednotation is: 8~= a/ax
1a1 = aa/ax1and6G/6p, the

functionalderivativeof G with respectto p.
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The bracket,(5), agreeswith the result of ref. [5],up to anoverall minussign. Thisbracketis thesumof two
parts:a semi-directproductanda two-cocycle.Thefirst part, in curly brackets,representsthe standard(Kirillov)
form [13] on thedual to theLie lagebra

L = D o (A0 n A~ A0), (6)

wherethesymbole denotesthesemi-directproduct,asmentionedearlier,andn denotesdirect sum.The corre-
spondingcommutatoris givenby

[(X;f; w;g),(X;f; ~,;j)] = ([X, X] ; X(f) — X(f); X(~3)— X(w); X(~)— X(g)) - (7)

Dual coordinatesare:M dual toXED; p tof E A0 ato w EM; stogE A0. The secondpart of thebracket
(5), not in curlybrackets,representsthegeneralizedtwo-cocycleonL, inducedfrom thestandardtwo-cocycle
(“symplectic form”) on (A0 nA’~)via thenaturalprojectionD e(A0 nA~n A0) —~ (A0 n Ar).

Onecanfurther restrict thebracketby exchangingthe order parameter,a,for the superfluidvelocity,u5.Since
= Va, we introduce

PM—pVa (8)

asa newvariable.Actually,P is therelativenormalmomentumdensity.The resulting bracketis

{F, G} [(6G/6p)a
1p÷(

6G/6Pk) (Flak + al’~’k)+ (6G/6s)8ls+ (6G/6Mk)(Mlak + alMk)] 6F/6Mi

+ (6G/6Pk)[(Plak + alFk)6F/6P
1+ sak6F/65] + (6G/6s)a1s6F/6P,~

+ (6Ff
6Mk)[Pak6F/6p+ (Flak + alpk)6FI6F

1I+ Sak 6Ff6s, (9)

which is the standardbracketon thedual to the Lie algebrawhosecommutatoris givenby

[(X1X2f1f2), (X1X~f1f2)]

=([X1,X1]; [X2,X2] + [X1,X2] — [X1,X2];(X1+X2)(f1)—(X1+~2)(f1);X1(f2)—~1(f2)). (10)

Noticethat thereareno two-cocycles.The dual coordinatesare:M dual toX1 ED; P toX2 ED; s tof1E A
0 p

tof
2EA

0.

Rotatingsuperfluid4He. In rotatingsuperfluid4He,vorticesappearandthe curl of the superfluidvelocity is
nonzero.A canonicalbracketfor this caseis known [2], for whichtherearefour canonicallyconjugatepairsof
variables:(p,a), (s, !3), (f, y), and(d,a),where

divdp. (11)

This relation,(11), is preservedby thesuperfluidflow. In addition,thesuperfluidvelocity,u5, is givenbyu5 = a
— Va.

In termsof the canonicalvariables,the physicalvariablesare given by p, a,s, definedasbefore;aswell as the
vectora; and

P = —sVI3 — fV’y, Nk = —pa,k— dla/,k+ (dlak),/. (12)

The vectora is thevorticial part of thesuperfluidvelocity,N is the superfluidmomentumdensity,andP is the
relativenormal momentumdensity.

Remark:In ref. [2], thesuperfluidmomentumdensityis takento be

Jpu5~dXcurlu5. (13)

This relationdoesnot allow a properrestrictionfrom canonicalvariablesto physicalvariablesdirectly. However,
underthenondynamicalconstraint,p = divd, onehasJ= N in (12), which canbe properlyrestrictedto give
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thefollowing bracket

{F, G} { [(6G/6p)81p+ (6G/6a)a1 + (6G/6 ak)(ak,l + alak) + (6GI6Nk)(Nlak + aINk)]6F/6N1

+ (6G/6s)a1s6F/6P1+ (6G/öPk)[(Flak + alpk)6FI6P1+ S
8k6F/6S]

+ (6GI6Nk)[pak6FI6p— a,k6FI6a÷(alak — a
1,k)6Ff6a1] } + [(6G/6p)6F/6cs— (6G/6a)6F/6p] - (14)

As with nonrotating
4He,this bracket,(14), is thesumof two parts:a semidirectproductanda standardtwo-

cocycle.The first part, in curly brackets,correspondsto the dualof the Lie algebra

L = [D e(A0 A~ A~ ~)]n [D A0], (15)

andtheremainderrepresentsthetwo-cocycleonL inducedfrom thecanonicaltwo-cocycleon (A0 ~ A’~)by pro-
jectionofL onto(A0 eAn).

With notationasbefore, thecommutatorfor the Lie algebraL is givenby

[~X
1X2f1f2 w; 0),(~l;~2;/l;12; ~‘;

= ([X1, ~i]; [X2, .~2]; X1(j1) — ~1(f1);x2(J~)— ~2(f2);X1(~,)— ~i(w); X1(~)— ~(0)) - (16)

Dual coordinatesonL are:NdualtoX1ED;PtoX2ED; p tof1EA
0 ato wE An; a toO E An—i; s tof

2EA
0.

Anisotropicsuperfluid3He-A,withoutspin. In ref. [3], a canonicalhamiltonianformalism is given for aniso-
tropic superfluidliquid 3He-A,without considerationof spinvariables.In this case,thereis a complexorder pa-
rameter4, = 4,1 + i4’2. The canonicallyconjugatepairs of variablesare(p, a), (s, 13), (f, ‘y), and(F, 4i), where,in
the lastpair,

= ~ F,
5 = (hf2m)p’,L’~. (17)

Notice that the variables~ F,5, are componentsof elementsiii, F, in 9 ® A
0, givenby

P=IP,
5ê,5, F=F~é~, (18)

with basiselements~r, in9. Onecannotrestrict the canonicalbracketto physicalvariablesfor thearbitrary Lie
algebra9 . However,for thephysicalcase9 = SO(3),correspondingto

3He-A, therestrictionis possible.Still, the
resultcanbegeneralizedforarbitrary 9, andwe write thisresult for thegeneralsituation.

The physicalvariablesfor anisotropic3He-A,without spin,are:massdensity,p;entropydensity,s;and

P=sV~3+fVy, M pVa +aVj3 +fV7— FaV~J1~, L L,5ê,5 (2mf1~)[~Li,F]. (19)

HereP is therelativenormalmomentumdensity,M is thetotalmomentumdensity,andL,
5 are componentsof the

orbital angularmomentumdensity.
Whenthecanonicalbracketis restrictedto physicalvariables,theresultingbrackettakesthefollowing form:

{F, G} [(6Gf6p)a1p+ (6G/6s)a1s+ (6G/6Pk)(Flak + alPk)+ (6G/6Mk)(Mlak+ alMk) + (6G/6L,5)a1L,5]6Ff 6M1

+ (6G/6Mk)[pak
6FI6p + sak6F/6s+ (~l8k+ alPk)öFf6P

1 +L,5ak6FI6L,5]

+ [(6G/6s)a1s+ (6G/6Pk)(Flak + alPk)] 6Ff61’l + (6G/6Pk)sak6F/6s— (2m/h)t~L,LG(6G/6L,5)öF/6LV, (20)

wherek,1 = 1, ..., n anda,p, u = 1, ..., dim 9. Thisexpression,(20), is the standardbracketon theLie algebra
with commutatorgivenby
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=(Lq,~& &&I + W~&l - [&X,l;(X1 +~2>vl>-(~l+~2)df&q.F2)-mf2)~ 

f~e[r,r]+xl~)~r-xldf)or). (21) 

Thedualcoordinatesare:MdualtoX1ED;PtoX2ED;stofiEAo;ptof2EAo;LtofQT‘EAos~. 

Anisotropic superfluid 3He-A, including spin. Canonical equations are given in ref. [4] for anisotropic super- 
fluid 3He-A, with spin density included. In this case, the order parameter has both a spin part, which is a vector, 

n, and an orbital part, which is a complex vector, JI = ( JI1 + iJr2). The canonically conjugate pairs of variables are 

(s, P), (rl,n), (& JI1), (+2, rlr*), VL, rL), 0% r% w h ere each of these vectors belong to 9 8 A”, with Q 

= SO(3) for 3He-A. 
The physical variables are the following: entropy density, s; spin vector, n; the real and imaginary parts of the 

orbital vector, JI1, JI 2 ; and 

P = -2mw:ti: - d&:>, L = w,v1 + WA21 + W,fLl 9 s= h,111+ [rVl, 

M=-(sVp+~~Vrll~+(P~V9~+77,Vn,+f~V~,L+f~V~~). (22) 

Here p is mass density, m is the mass of the 3He atom, M is total momentum density, and L, S E 9 0 Afl are, 

respectively, orbital angular momentum density and spin density. 
As before, the restriction of the canonical bracket cannot be done for arbitrary 8. However, it could be carried 

out for $$ = SO(3), and the resulting bracket has meaning for arbitrary $? : 

{F, Cl 2 [WVs)$s t @Wn&,~ + W/6 Icl:> d$,, + W/6 ti,$ $;,I 

t (6G/6L,)alL, + @G/&T,,)a,S, + @G/6&p + (6G/6Mk)(M& + a/M,)] 6F/6Ml 

t (6G/SMk)[sak6F/6s - n,,k GFISn, - $:,$F/6$: - $f$F/S $z + L,ak6FIGL, +Sc,ak6F/W, + pa$F/6pl 

+ @GI~n,)W~S,t~,n, + 2m[(W~$~)~~ -(~G~~~~)~~IW~P + [(6G/6~:)~~+(6G/6~;I)~~lt~,GFIGL, 

t @G/8L,)[t&,($~SF/6 I,!$ t +:6F/6 $,‘) t t~,,L,GFIGL,] + (6G/6SP)[tf,n, 6F/6n, + t$S,SF/;lsS,] 

+ 2m@G/6p)(Jlz 6F/6 $: 1 $k 6F/6 I@ . (23) 

This bracket corresponds to the Lie algebra with the following commutator 

[(x;fi~rl;f28r2;~10~‘1;~2~~2;~38~3;gl;g2),(~;~~fi~iil;~2282;~1~~‘1;~2~~2;~38~3;81;82)1 

=([x,X1;x(~~)~~l-~~~)~rl+fi~~~[rl,~li;x~2)~~2-~~~)~r2+f2J;2Q[r2,~2i; 

x(WI) ~5~ - &idl)e aI +f& 0 [rI, $1 -SpI ~3 [Fl, q; 

X(&,) 63 62 - 30~) cs 'P, + f2ii2 c4 [r2, G2] - f2w2 0 [r2, Q2] + 2m(gl a3 @ a3 - gl G3 60 63); 

X(G3)@(a3 -~(03)Q~3+f2;3~[r2,~‘3] -f2U3 @[F2,@3] +2m(g1;2~~2-glW2~~‘2); 

X(&) - Jf(g&%z) - Z(g2)) * (24) 

Dualcoordinatesare:MdualtoXED;stog2EAo;ptoglEAo;Stofi~rlEAo~S;Ltof2~r2EAo 

eS;ntool~~P1EAn~Q;g1to,2~~2EAn~S;g2t003~~3EAn8S. 
Notice the unexpeuted appearance of a (2m t I)-dimensional subalgebra fymed by $l, r(r* and p, whose mean- 

ing is quite mysterious. Moreover, the conditions n,n, = cl and $f J/i t J/, ticl = c2 (where cl and c2 are arbitrary 
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constants)arepreservedby the dynamics.Also, one caneasilytransformthebracket(23) from variablesn,5,
neworderparameters,[14], A~= fl,5 ,Li~andA~= n,5 iIi~,if sodesired.

In ref. [6], LebedevandKhalatnikovdescribea Poissonbracketfor a so-called“quantumfluid”. In this work,
certainnoncanonicalbracketsappear,which are reminiscentof thosegivenin theprevioustwo sectionsfor arbi-
traryLie algebras.Onemajordifferencethough,is that,for thebracketof ref. [6], thecomponentsof the super-
fluid velocity evidently commuteamongthemselves~see,e.g.,eq.(16) of ref. [6]}, whereasno suchcommutation
occursin our case.

Conclusion.We havepresentednoncanonicalPoissonbracketsfor superfluidsaswell asfor superfluidsgeneral.
izedto an arbitrarysymmetryalgebra.Eachof thesenoncanonicalPoissonbracketshasbeenassociatedwith an
appropriateLie algebraanddualcoordinateshavebeenidentified. Forthe properchoicesof hamiltonians,the
correctequationsof superfluiddynamicsmay be recoveredfrom thesebrackets.

It is a pleasureto thankLarry Campbellfor Los Alamos NationalLaboratoryfor commentsandexplanations
of the physicsof superfluids.Wearealso grateful to the Los AlamosCenterfor NonlinearStudies,whosefacilities
made this work possible.
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